VOLT AI Logo

VOLT AI

Senior Applied AI Engineer (Multimodal Perception & Reasoning)

Posted 8 Days Ago
In-Office or Remote
7 Locations
Senior level
In-Office or Remote
7 Locations
Senior level
Design, optimize, and deploy multimodal AI models for real-world applications focusing on vision and language understanding, ensuring accuracy and performance in production systems.
The summary above was generated by AI
VOLT is building the next generation of AI perception systems for the physical world, focused on safety, security, and real-time risk detection.
We are seeking a Senior Applied AI & Machine Learning Engineer to design, optimize, and ship multimodal AI models that operate reliably in real-world environments. This is a deeply applied role, centered on taking models from data to production—across both edge devices and cloud infrastructure.
You will work on vision, video, and language-based models that understand real-world scenes and events, and you will be accountable for their accuracy, latency, robustness, and cost in production systems.
This role reports directly to the Head of Engineering and plays a critical role in advancing VOLT AI’s core perception platform.

Key Responsibilities

  • Build, fine-tune, and deploy production-grade multimodal models for safety and security applications, with a focus on visual and video perception, language-assisted and multimodal reasoning, and temporal understanding of real-world environments
  • Own the full applied ML lifecycle, including data collection, labeling strategies, and dataset curation, model fine-tuning, evaluation, and iteration, and deployment, monitoring, and continuous improvement in production
  • Drive model performance in real-world conditions, optimizing for high precision and recall, low false positives and false negatives, and robustness to noise, lighting changes, occlusion, and domain shift
  • Optimize models for edge and cloud deployment, including quantization, pruning, and model compression, latency, throughput, and memory optimization, and hardware-aware tuning for GPUs and edge accelerators
  • Build and maintain training and inference pipelines that support scalable experimentation and evaluation, reproducibility and model versioning, and reliable production deployment
  • Collaborate closely with infrastructure and systems engineers to integrate models into real-time perception pipelines, balance accuracy, performance, and cost constraints, and diagnose and resolve production inference issues
  • Use real-world deployment feedback and metrics to drive data and model improvements

Required Qualifications

  • 8+ years of experience in applied machine learning or AI systems
  • Strong hands-on experience with vision, video, or multimodal models
  • Proven experience taking models into production, not just research prototypes
  • Deep understanding of model optimization (quantization, pruning, performance tuning)
  • Proficiency in Python and modern ML frameworks (e.g., PyTorch)
  • Experience evaluating models using real-world metrics and constraints
  • Ability to operate independently and own complex technical systems end to end

Preferred Qualifications

  • Experience with multimodal or vision-language models (CLIP-like, BLIP-like, or custom)
  • Experience deploying models to edge or resource-constrained environments
  • Familiarity with inference optimization stacks (ONNX, TensorRT, CUDA)
  • Experience working on physical-world perception systems (video, sensors, environments)
  • Background in safety, security, robotics, or autonomous systems
  • Experience mentoring senior engineers or providing technical leadership

What Success Looks Like

  • Models ship reliably and improve measurable safety outcomes
  • Precision and recall improve while inference cost and latency decrease
  • Edge and cloud inference pipelines operate at production scale
  • Data and model iteration loops accelerate over time
  • AI perception becomes a durable competitive advantage for VOLT AI

At VOLT AI, you will build applied AI systems that run in the real world—on live video, in real environments, under real constraints. This role is for an engineer who wants to ship models, optimize them aggressively, and see their impact in production, not publish papers.

Top Skills

Cuda
Onnx
Python
PyTorch
Tensorrt

Similar Jobs

10 Minutes Ago
Easy Apply
Remote or Hybrid
Canada
Easy Apply
Senior level
Senior level
Artificial Intelligence • Cloud • Computer Vision • Hardware • Internet of Things • Software
The role involves building core infrastructure for agent orchestration, defining platform primitives, designing reliable backend services, and collaborating with teams to refine operational systems.
Top Skills: GoPython
12 Minutes Ago
Easy Apply
Remote or Hybrid
Toronto, ON, CAN
Easy Apply
Senior level
Senior level
Artificial Intelligence • Marketing Tech • Software
Lead the Strategic Sourcing function to optimize vendor lifecycle, drive technology sourcing strategies, and enhance procurement through AI.
Top Skills: Ai ApplicationsIroncladProductiv
12 Minutes Ago
Remote
British Columbia, BC, CAN
Junior
Junior
Productivity • Software • App development • Automation
The Business Development Representative generates new business opportunities through prospecting, cold calling, and nurturing leads, while utilizing CRM systems to manage relationships.
Top Skills: Client Relationship Management (Crm) SystemDocument Software DevelopmentSdk Technology

What you need to know about the Montreal Tech Scene

With roots dating back to 1642, Montreal is often recognized for its French-inspired architecture and cobblestone streets lined with traditional shops and cafés. But what truly sets the city apart is how it blends its rich tradition with a modern edge, reflected in its evolving skyline and fast-growing tech industry. According to economic promotion agency Montréal International, the city ranks among the top in North America to invest in artificial intelligence, making it le spot idéal for job seekers who want the best of both worlds.

Key Facts About Montreal Tech

  • Number of Tech Workers: 255,000+ (2024, Tourisme Montréal)
  • Major Tech Employers: SAP, Google, Microsoft, Cisco
  • Key Industries: Artificial intelligence, machine learning, cybersecurity, cloud computing, web development
  • Funding Landscape: $1.47 billion in venture capital funding in 2024 (BetaKit)
  • Notable Investors: CIBC Innovation Banking, BDC Capital, Investissement Québec, Fonds de solidarité FTQ
  • Research Centers and Universities: McGill University, Université de Montréal, Concordia University, Mila Quebec, ÉTS Montréal

Sign up now Access later

Create Free Account

Please log in or sign up to report this job.

Create Free Account