As an ML Engineer, create and improve ML models, collaborate with teams, maintain experimentation pipelines, and stay updated with ML advancements.
Join us at Provectus to be a part of a team that is dedicated to building cutting-edge technology solutions that have a positive impact on society. Our company specializes in AI and ML technologies, cloud services, and data engineering, and we take pride in our ability to innovate and push the boundaries of what's possible.
As an ML Engineer, you’ll be provided with all opportunities for development and growth.
Let's work together to build a better future for everyone!
Requirements:
- Comfortable with standard ML algorithms and underlying math.
- Strong hands-on experience with LLMs in production, RAG architecture, and agentic systems
- AWS Bedrock experience strongly preferred
- Practical experience with solving classification and regression tasks in general, feature engineering.
- Practical experience with ML models in production.
- Practical experience with one or more use cases from the following: NLP, LLMs, and Recommendation engines.
- Solid software engineering skills (i.e., ability to produce well-structured modules, not only notebook scripts).
- Python expertise, Docker.
- English level - strong Intermediate.
- Excellent communication and problem-solving skills.
Will be a plus:
- Practical experience with cloud platforms (AWS stack is preferred, e.g. Amazon SageMaker, ECR, EMR, S3, AWS Lambda).
- Practical experience with deep learning models.
- Experience with taxonomies or ontologies.
- Practical experience with machine learning pipelines to orchestrate complicated workflows.
- Practical experience with Spark/Dask, Great Expectations.
Responsibilities:
- Create ML models from scratch or improve existing models.
- Collaborate with the engineering team, data scientists, and product managers on production models.
- Develop experimentation roadmap.
- Set up a reproducible experimentation environment and maintain experimentation pipelines.
- Monitor and maintain ML models in production to ensure optimal performance.
- Write clear and comprehensive documentation for ML models, processes, and pipelines.
- Stay updated with the latest developments in ML and AI and propose innovative solutions.
Top Skills
AWS
Dask
Docker
Python
Spark
Similar Jobs
Artificial Intelligence • Information Technology • Consulting
As an ML Engineer at Provectus, you'll create and improve ML models, collaborate on production efforts, develop experimentation roadmaps, and maintain model performance.
Top Skills:
AIAWSCloud ServicesDaskData EngineeringDockerLlmsMlNlpPythonRag ArchitectureRecommendation EnginesSpark
Artificial Intelligence • Blockchain • Fintech • Financial Services • Cryptocurrency • NFT • Web3
The Technical Account Manager at Coinbase will manage technical relationships with clients, advocate for product development, and ensure smooth implementations and support of Coinbase services.
Top Skills:
APIsAWSCloud InfrastructureFix ProtocolJson RpcRestWebsockets
Cloud • Information Technology • Security • Software • Cybersecurity
The Senior Solutions Engineer collaborates with clients on technology solutions, providing expertise on networking, cybersecurity, and edge computing while ensuring best practices for production deployment.
Top Skills:
BashCdnDdosDnsHTTPJavaScriptPythonSaseTcpUdpZero-Trust
What you need to know about the Montreal Tech Scene
With roots dating back to 1642, Montreal is often recognized for its French-inspired architecture and cobblestone streets lined with traditional shops and cafés. But what truly sets the city apart is how it blends its rich tradition with a modern edge, reflected in its evolving skyline and fast-growing tech industry. According to economic promotion agency Montréal International, the city ranks among the top in North America to invest in artificial intelligence, making it le spot idéal for job seekers who want the best of both worlds.
Key Facts About Montreal Tech
- Number of Tech Workers: 255,000+ (2024, Tourisme Montréal)
- Major Tech Employers: SAP, Google, Microsoft, Cisco
- Key Industries: Artificial intelligence, machine learning, cybersecurity, cloud computing, web development
- Funding Landscape: $1.47 billion in venture capital funding in 2024 (BetaKit)
- Notable Investors: CIBC Innovation Banking, BDC Capital, Investissement Québec, Fonds de solidarité FTQ
- Research Centers and Universities: McGill University, Université de Montréal, Concordia University, Mila Quebec, ÉTS Montréal

.png)
